MANUAL ON
SEWERAGE AND SEWAGE
TREATMENT
(SECOND EDITION)

Prepared by:
THE EXPERT COMMITTEE

Constituted by:
THE GOVERNMENT OF INDIA

CENTRAL PUBLIC HEALTH
AND ENVIRONMENTAL ENGINEERING ORGANISATION

MINISTRY OF URBAN DEVELOPMENT
NEW DELHI
DECEMBER, 1993
Price: (Inland) Rs. 210.00 (Foreign) £ 24.49 or $ 75 60 Cents.
FOREWORD

Safe water supply and hygienic sanitation facilities are the two basic essential amenities the community needs on a top priority for healthy living. While provision of safe drinking water takes precedence in the order of provision of basic amenities to community, the importance of hygienic sanitation facilities through low cost on-site sanitation, conventional sewerage and sewage treatment can no longer be allowed to lag behind, as about 80% of water used by the community comes out of houses in the form of waste water which unless properly collected, conveyed, treated and safely disposed of may eventually pollute our precious water resources and cause environmental degradation.

As of now about 45% of urban population has been provided with reasonable hygienic sanitation facilities in our country and as such there is still much to accomplish so as to reach 100% coverage. While it is necessary to adopt conventional sewerage and treatment methods in our metro and mega cities, it is economical to go in for low cost option wherever feasible particularly in small and medium towns. Yet another important area which needs the urgent attention of our Public Health and Environmental Engineers is possibility of re-use and recycling of waste water after necessary treatment for various beneficial uses so as to reduce the ever increasing demand for fresh water.

It is hoped the revised Manual on Sewerage and Sewage Treatment brought out by the Central Public Health and Environmental Engineering Organisation of this Ministry will meet the professional needs of the practising Engineers dealing with sanitation sector in the country for achieving the goal of "sanitation for all" within a reasonable time frame.

(SHEILA KAUL)
PREFACE

The first Manual on Sewerage and Sewage Treatment was published by the erstwhile Ministry of Works & Housing (presently Ministry of Urban Development) on the basis of recommendations of an Expert committee in 1977. The said Manual has been in use widely by field Engineers who are engaged in the field of sewerage and sewage treatment. However, over a period of time there has been an advancement in the technology and as such the need for revising and updating the said manual has been keenly felt for quite some time. The conference on Mid-Decade Review of Water Decade Programme held in October, 1985 recommended the setting up of Expert Committee for undertaking this task. Accordingly the Ministry of Urban Development, Govt. of India constituted an Expert Committee in December, 1985 with the following composition:

1. Shri. V. Venugopalan
 Adviser(PHEE)
 Central Public Health & Environmental Engineering
 Organisation,
 Ministry of Urban Development
 Nirman Bhavan, New Delhi.
 Chairman

2. Shri K.R. Bulusu,
 Acting Director,
 National Environmental Engg.
 Research Institute,
 Nehru Marg, Nagpur-20.

3. Director
 All India Institute of Hygiene & Public Health or his representative,
 Chittaranjan Avenue, Calcutta.

4. Chief Engineer (Urban),
 Maharashtra Water Supply &
 Sewerage Board,
 C.I.D.C.O., Bhavan,
 South Wing, 2nd Floor,
 New Bombay-14.

5. Chief Engineer (Urban Services)
 Tamil Nadu Water Supply &
 Drainage Board, TWAD Building,
 Chepauk, Madras.

6. Director (Engg.),
 Madras Metropolitan Water
 Supply & Sewerage Board,
 Pumping Station Road,
 Chindaripet, Madras.

7. Chief Engineer,
 Local Self Govt. and
 Urban Development Deptt.,
 Govt. of West Bengal,
 No.1, Ganatin Place,
 Calcutta-1.

Member

(v)
8. Dr. R. Pitchai,
 Prof. & Director,
 Centre for Environmental Studies,
 Anna University, Madras.
 Member

9. Shri M.R. Parthasarathy,
 Dy. Adviser (PHE)
 C.P.H.E.E.O.,
 Ministry of Urban Development,
 Nirman Bhavan, New Delhi.
 Member

10. Chief Engineer,
 Gujarat Water Supply & Sewerage Board,
 Near Mayur Hotel, Sector-16,
 Gandhinagar-382016.
 Member

11. Director or his representative
 Central Ganga Authority,
 Ministry of Environment & Forests,
 New Delhi.
 Member

12. Chairman or his representative
 Central Board for Prevention and Control of Water Pollution,
 Nehru Place, New Delhi.
 Member

13. Dr. H.C. Arora,
 Deputy Adviser (Trg.)
 C.P.H.E.E.O.,
 Ministry of Urban Development,
 Nirman Bhavan, New Delhi.
 Member-Secretary

Since some of the members of the Expert Committee including the then Chairman had retired, it became necessary to reconstitute the said Expert Committee in March, 1990 with the following composition:

1. Adviser (PHEE),
 Ministry of Urban Development
 C.P.H.E.E.O. New Delhi.
 Chairman
 (Sri. P.S. Rajvanshy, had taken over the charge of the Post of Adviser since November, 1990)

2. Shri. S.S. Patwardhan
 Member Secretary,
 Maharashtra Water Supply & Sewerage Board, Bombay.
 Member

3. Shri. S.K. Neogi,
 Chief Engineer,
 Govt. of West Bengal,
 Member
4. Shri. J.D. Seth,
Chief Engineer,
Gujarat Water Supply and
Sewerage Board,
Gandhinagar, Gujarat.
Member

5. Shri. L.Panneerselvam,
Deputy Director,
Ganga Project Directorate,
New Delhi.
Member

6. Dr. K.R. Ranganathan,
Member Secretary,
Central Pollution Control Board,
New Delhi.
Member

7. Shri. A.K. Awasthi,
Deputy Director,
Indian Standards Institute,
New Delhi.
Member

8. Dr. S.R. Shukla,
Dy. Adviser (PHE),
C.P.H.E.E.O.,
Ministry of Urban Development
New Delhi.
Member

9. Shri. R. Sethuraman,
Asstt. Adviser (PHE),
Ministry of Urban Development
C.P.H.E.E.O.
Member

10. Shri. V.B. Rama Prasad,
Dy. Adviser (PHE)
Ministry of Urban Development,
C.P.H.E.E.O.
Member Secretary

11. Dr. S.D. Badrinath
Asst. Director,
NEERI, Nagpur.
Member

12. Dr. D. M. Mohan,
Director (Project),
HMWSS Board,
Hyderabad.
Member

13. Dr. I.C. Agarwal,
Professor of Environmental Engg.
Motilal Engineering College,
Allahabad.
Member

14. Dr. R. Guruswamy,
Professor,
Anna University,
Madras.
Member

(vii)
15. Shri. S. Deivamani,
Rtd. Engineering Director,
Madras Metro Water Supply &
Sewerage Board, Madras.
Member

16. Shri. S. Shankarappa,
Chief Engineer,
Municipal Corporation of
Greater Bombay, Bombay.
Member

17. Shri. M.R. Parthasarathy,
Rtd. Dy. Adviser (PHE),
Ministry of Urban Development
C.P.H.E.E.O., Bangalore.
Member

18. Shri D'Cruz,
Rtd. Engineer-in-Chief,
Delhi Water Supply & Sewerage
Disposal Undertaking, Delhi.
Member

19. Shri. S. D. Mundra,
Director,
Geo-Millers & Co. Pvt. Ltd.,
New Delhi.
Member

20. Shri. S. J. Arceivala,
Managing Director,
M/s. Associate Industrial
Consultants (India) Pvt. Ltd.,
Bombay.
Member

21. Dr. R. H. Siddiqi,
Professor,
Aligarh Muslim University,
Aligarh.
Member

22. Shri. S. L. Abhyankar,
Hony. Technical Adviser,
Indian Pump & Pump Mfg. Assocn.,
Bombay.
Member

The originally constituted Expert committee met 5 times and the reconstituted Committee held 16 meetings in all, to discuss and finalise the draft Manual. Later, in October, 1992 the Ministry had constituted a three members Editorial Committee consisting of the following members for editing and finalising the said draft document:-

1. J. D. Cruz,
Consultant,
WAPCOS.

2. Dr. I. C. Agarwal,
Head of the Dptt. of Civil Engineering,
MNREC, Allahabad.

3. Dr. D. M. Mohan,
Director (Projects)
HMWSS Board, Hyderabad (A.P.).

(vii)
The said Editorial committee met 3 times to complete the task assigned to it. In all there, are 26 chapters in the Manual covering various important aspects such as Planning, Legal, Financial and Administrative aspects, Design and Construction of Sewers, Sewage Treatment Plants, Sludge Treatment and Disposal, Tertiary Treatment of Sewage for Reuse, Effluent Disposal and it’s Utilisation, On-Site Sanitation, Corrosion Prevention and it’s control, Operation and Maintenance of Sewerage System as well as Treatment Plants etc. It is pertinent to mention that several modifications have been suggested in various chapters mentioned above. For instance, since conventional sewerage is very expensive it has to be confined to Class-I cities and capitals of States/UTs. Even in such cities, sewerage has to be confined to core areas only and the fringe areas have to be provided with less expensive on-site sanitation systems. Similarly, taking into account the hydraulics and other relevant factors, the design of sewers has been modified to make it economical. In so far as treatment of sewage is concerned, Anaerobic method such as USAB technology has been introduced since it is less energy intensive and economical in operation and maintenance. Similarly, duckweed ponds have been suggested for treating sewage in an economical way with impressive cash returns. Adequate emphasis has been given to reuse and recycling of sewage effluent after tertiary treatment, keeping in view the ever increasing demand for fresh water for various beneficial uses. Operation and Maintenance of Sewerage Systems and Sewage Treatment Plants is often neglected due to inadequate funds and lack of trained technical manpower. Therefore, these aspects have been given due emphasis and discussed in detail. Later, in November, 1992 the draft Manual was circulated to various State Public Health Engineering Deps. and Water Supply and Sewerage Boards with a view to have their valuable suggestions on the same before it’s finalisation and printing. Finally the contents of the Manual were thoroughly discussed in greater detail, topic by topic at a special conference of Chief Engineers in charge of Urban Water Supply and Sanitation Sector held at Thiruvananthapuram (Kerala) on 24th and 25th September, 1993 organised by the Ministry of Urban Development and Kerala Water Authority.

The said Conference was well attended and valuable suggestions that emerged during the discussions have been incorporated to the extent possible to make this Manual useful from the practising Engineer’s point of view. There are no two opinions that the said Manual will be a boon to the field Engineers in the country.

The Expert Committee thanks the Ministry of Urban Development, Govt. of India for providing all facilities. The initiative taken and sincere efforts made by Shri V. Venugopal, the then Adviser(PHEE) in getting the original Expert Committee constituted is gratefully acknowledged. The Committee expresses its appreciation to Shri V.B. Rama Prasad, Dy. Adviser (PHE) and Member-Secretary for his untiring efforts in making possible the completion of the manual in it’s finest form despite his arduous normal duties. Special mention is made of the services of Shri R. Sethuraman, Dy. Adviser (Trg.) and Shri M. Sankaranarayanan, Asst. Adviser(PHE) who unstintingly devoted their time in all phases of this work. The valuable contribution of Dr. S.R. Shulka, Dy. Adviser (PHE), Shri B. B. Uppal, Asst. Adviser (PHE) and Shri Sukanta Kar, Scientific Officer in CPHEEO are gratefully acknowledged. The committee thanks Dr. D. M. Mohan, Presently Director (Projects), Hyderabad Metropolitan Water Supply and Sewerage Board for getting the final draft computerised. Thanks are also due to the Govt. of Kerala and Kerala Water Authority for hosting the aforesaid conference.

Last but not the least, the committee desires to record their deep appreciation of the services rendered by different Officers and staff members of the PHE and Accounts Section of the Ministry and the Secretariat of CPHEEO.

P.S. RAJVANSHY
ADVISER (PHEE)
C.P.H.E.E.O.
CONTENTS

1 PLANNING

1.1 OBJECTIVE 1

1.2 NEED FOR PLANNING 1

1.3 BASIC DESIGN CONSIDERATIONS 1

1.3.1 Engineering Considerations 1

1.3.2 Environmental Considerations 2

1.3.3 Process Considerations 3

1.3.4 Cost Considerations 5

1.4 DESIGN PERIOD 5

1.5 POPULATION FORECAST 5

1.5.1 General Considerations 5

1.5.2 Final Forecast 8

1.6 ESTIMATION OF WASTE WATER FLOW 8

1.6.1 Sources of Waste Water 8

1.6.2 Per Capita Waste Water Flow 8

1.7 SEWAGE CHARACTERISTICS 8

1.7.1 Effect of Industrial Waste 9

1.8 SURVEY AND INVESTIGATION 9

1.8.1 Basic Information 9

1.8.1.1 Physical Aspects 9

1.8.1.2 Developmental Aspects 9

1.8.1.3 Fiscal Aspects 10

1.8.1.4 Other Aspects 10

1.8.2 Project Surveys 11

1.8.2.1 Preliminary Project Surveys 11

1.8.2.2 Detailed Project Surveys 11

1.8.2.3 Construction Surveys 11
1.9 PROJECT REPORT
1.9.1 General
1.9.1.1 Project Reports
1.9.2 Identification Report
1.9.3 Prefeasibility Report
1.9.3.1 Executive Summary
1.9.3.2 Introduction
1.9.3.3 Project Area and The Need for The Project
1.9.3.4 Long Term Plan for Wastewater Disposal
1.9.3.5 Proposed Waste Water Project
1.9.3.6 Conclusions and Recommendations
1.9.4 Feasibility Report
1.9.4.1 Contents
1.9.4.2 Background
1.9.4.3 The Proposed Project
1.9.4.4 Institutional and Financial Aspects
1.9.4.5 Conclusions and Recommendations

2 MANAGEMENT, ADMINISTRATION, LEGAL AND FINANCIAL ASPECTS
2.1 MANAGEMENT
2.1.1 Government of India (G.O.I) Level
2.1.2 State Government Level
2.1.3 Local Body Level
2.2 COMMON ASPECTS OF MANAGEMENT
2.2.1 General Administration
2.2.1.1 Supervisory Staff
2.2.1.2 Operating Staff
2.2.2 Personnel Administration
2.2.3 Inventory Control
3.3 ESTIMATION OF STORM RUNOFF
 3.3.1 Rational Method
 3.3.1.1 Runoff - Rainfall Intensity Relationship
 3.3.1.2 Storm Frequency
 3.3.1.3 Intensity of Precipitation
 3.3.1.4 Time of Concentration
 3.3.1.5 Coefficient of Runoff
 3.4 HYDRAULICS OF SEWERS
 3.4.1 Type of Flow
 3.4.2 Flow - Friction Formulae
 3.4.2.1 Mannings Formula
 3.4.2.2 Darcy Weisbach Formula
 3.4.2.3 Hazen-Williams Formula
 3.4.2.4 Friction Coefficients
 3.4.2.5 Modified Hazen-Williams Formula
 3.4.2.6 Depth of Flow
 3.4.2.7 Formula for Self Cleansing Velocity
 3.4.3 Velocities
 3.4.3.1 Velocity At Minimum Flow
 3.4.3.2 Erosion and Maximum Velocity
 3.4.4 Sewer Transitions
 3.4.4.1 Non Uniform Flow
 3.4.4.2 Specific Energy
 3.4.4.3 Hydraulic Jump
 3.4.4.4 Back Water Curves
 3.4.4.5 Sewer Transitions
 3.4.4.6 Bends
 3.4.4.7 Junction
 3.4.4.8 Vertical Drops and Other Energy Dissipators
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>NON CIRCULAR SEWERS</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>SEWER APPURTENANCES</td>
<td>74</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>MANHOLES</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Ordinary Manholes</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Spacing</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Constructional Details</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Covers and Frames</td>
<td>78</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Types of Manholes</td>
<td>78</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Straight - Through Manholes</td>
<td>78</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Junction Manholes</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Side Entrance Manholes</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Drop Manholes</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2.5</td>
<td>Scraper (service) Type Manhole</td>
<td>81</td>
</tr>
<tr>
<td>4.2.2.6</td>
<td>Flushing Manholes</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>INVERTED SIPHONS</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>HOUSE SEWER CONNECTIONS</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>STORM WATER INLETS</td>
<td>85</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Curb Inlets</td>
<td>83</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Gutter Inlets</td>
<td>83</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Combination Inlets</td>
<td>83</td>
</tr>
<tr>
<td>4.6</td>
<td>CATCH BASINS</td>
<td>83</td>
</tr>
<tr>
<td>4.7</td>
<td>REGULATOR OR OVERFLOW DEVICE</td>
<td>84</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Side Flow Weir</td>
<td>84</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Leaping Weir</td>
<td>84</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Float Actuated Gates and Valves</td>
<td>84</td>
</tr>
<tr>
<td>4.8</td>
<td>FLAP GATES AND FLOOD GATES</td>
<td>84</td>
</tr>
<tr>
<td>4.9</td>
<td>MEASURING DEVICES</td>
<td>85</td>
</tr>
<tr>
<td>4.10</td>
<td>SEWER VENTILATORS</td>
<td>85</td>
</tr>
</tbody>
</table>
5 MATERIALS FOR SEWER CONSTRUCTION
 5.1 INTRODUCTION 87
 5.2 TYPES OF MATERIAL 87
 5.2.1 Brick 87
 5.2.2 Concrete 87
 5.2.2.1 Precast Concrete 88
 5.2.2.2 Cast-In-Situ Reinforced Concrete 88
 5.2.3 Stoneware or Vitrified Clay 88
 5.2.4 Asbestos Cement 88
 5.2.5 Iron and Steel 89
 5.2.5.1 Cast Iron 89
 5.2.5.2 Steel 89
 5.2.5.3 Ductile Iron Pipes 89
 5.2.6 Plastic Pipes 90
 5.2.6.1 General 90
 5.2.6.2 PVC Pipes 90
 5.2.6.3 High Density Polyethylene (HDPE) Pipes 90
 5.2.7 Glass Fibre Reinforced Plastic Pipes 90
 5.2.7.1 Fibre Glass Reinforced Plastic Pipes (FRP) 91
 5.2.8 Pitch Fibre Pipes 91
 5.3 JOINTING IN SEWER PIPES 91
6 STRUCTURAL DESIGN OF BURIED SEWERS
 6.1 INTRODUCTION 92
 6.2 TYPE OF LOADS 92
 6.3 LOADS ON CONDUITS DUE TO BACKFILL 93
 6.3.1 Types of Installation or Construction Conditions 93
 6.3.2 Loads for Different Conditions 95
 6.3.2.1 Embankment or Projecting Conduit Condition 95
 6.3.2.2 Trench Condition 104
 6.3.2.3 Tunnel Condition 107
 6.3.2.4 Effect of Submergence 111

2—51 CPHEEO/ND/94
6.4 LOAD ON CONDUIT DUE TO SUPER IMPOSED LOADS 111
6.4.1 Concentrated Load 113
6.4.2 Distributed Load 113
6.4.3 Conduits Under Railway Track 115
6.5 SUPPORTING STRENGTH OF RIGID CONDUIT 115
6.5.1 Laboratory Test Strength 116
6.5.2 Field Supporting Strength 116
6.5.3 Supporting Strength in Trench Conditions 116
6.5.3.1 Classes of Bedding 116
6.5.3.2 Load Factors 118
6.5.4 Supporting Strength in Embankment Conditions 119
6.5.4.1 Classes of Bedding 120
6.5.4.2 Load Factors 120
6.5.5 Conduits Under Simultaneous Internal Pressure and External Loading 122
6.6 RELATIONSHIP BETWEEN THE DIFFERENT ELEMENTS IN STRUCTURAL DESIGN 123
6.7 RECOMMENDATIONS 123
6.8 ILLUSTRATIVE EXAMPLES 124
7 CONSTRUCTION OF SEWERS 126
7.1 CONSTRUCTION METHODS 126
7.1.1 Trench 126
7.1.1.1 Dimensions 126
7.1.1.2 Excavation 126
7.1.1.3 Shoring 126
7.1.1.4 Underground Services 127
7.1.1.5 Dewatering 127
7.1.1.6 Foundation and Bedding 127
7.1.2 Tunnelling 127
7.1.2.1 Shafts 128
7.1.2.2 Methods of Tunnelling 128
7.1.3 Laying of Pipe Sewers
7.1.3.1 Stoneware Pipes
7.1.3.2 R.C.C. Pipes
7.1.3.3 Cast-In-situ Concrete Sections
7.1.3.4 Construction of Brick Sewers
7.1.3.5 Cast Iron Pipes
7.1.4 Jointing of Sewers
7.1.4.1 Stoneware Pipes
7.1.4.2 Concrete Pipes
7.1.4.3 C.I. Pipes
7.1.5 Hydraulic Testing of Pipe Sewers
7.1.5.1 Water Test
7.1.5.2 Air Testing
7.1.6 Check for Obstruction
7.1.7 Construction of Manholes
7.1.8 Sewer Connections
7.1.9 Backfilling of the Trenches
7.1.10 Removal of Sheeting
8 MAINTENANCE OF SEWERAGE SYSTEMS
8.1 INTRODUCTION
8.2 TYPES OF MAINTENANCE
8.3 NECESSITY OF MAINTENANCE
8.4 ORGANISATION FOR MAINTENANCE
8.6 PROVISIONS IN DESIGN
8.6 HOUSE CONNECTIONS
8.7 PLANNING FOR SEWER MAINTENANCE
8.8 SEWER CLEANING EQUIPMENT AND PROCEDURES 136
8.8.1 Portable Pump Set 136
8.8.2 Manila Rope and Cloth Ball 136
8.8.3 Sectional Sewer Rods 137
8.8.4 Sewer Cleaning Bucket Machine 137
8.8.5 Dredger (Clam-shell) 137
8.8.6 Roding Machine with Flexible Sewer Rods 137
8.8.7 Scraper 141
8.8.8 Hydraulically Propelled Devices 141
8.8.9.1 Flush Bags 141
8.8.9.2 Sewer Balls 141
8.8.9.3 Sewer Scooters 142
8.8.9 Velocity Cleaners (Jetting Machines) 142
8.8.10 Suction Units (Gully Emptier) 142
8.8.11 Pneumatic Plugs 144
8.9 HAZARDS 144
8.9.1 Gases In Sewerage System 144
8.10 PRECAUTIONS 145
8.10.1 Traffic Control 145
8.10.2 Manhole Safety 145
8.10.3 Infection 146
8.10.4 Precautions of Pumping Stations 146
8.10.5 Precautions Against Electrical Shocks 147
8.11 SAFETY EQUIPMENT 147
8.11.1 Gas Masks 147
8.11.2 Breathing Apparatus 148
8.11.2.1 Air Hose Respirator 148