Chapter 8.8.8: Flushing Bag

The last valve

It may develop

some form of emulsion in the downstream portion of the pipe, as a result of the high pressures. The downstream portion of the pipe should be flushed at a rate of 100 m/s to clear the line of any build-up of material. The downstream portion of the pipe should be cleared at a rate of 200 m/s to clear the line of any build-up of material.

The Hydrofluorated Propylene Devices

8.8.8.4: Hydrofluorated Propylene Devices

The devices are designed to be used in conjunction with the system to protect the system from any potential leaks. They are commonly known as HCFCs and are made of materials that are resistant to corrosion and other chemicals.

The devices are used in small, sealed systems to clear the system of any potential leaks. They are designed to be used in conjunction with the system to protect the system from any potential leaks. They are commonly known as HCFCs and are made of materials that are resistant to corrosion and other chemicals.
8:30 Session:田鸡(剪脚) (Cuty Empet)

The high velocity stream of water affects the fish directly and disorients them. After disorientation, a few dozen may be caught in the stream's current and then released. If this process is repeated for a long period of time, the stream becomes clogged with fish. At this point, the stream's current is disrupted, preventing the water from flowing normally. As the stream's current weakens, the fish start to move away from the clogged area. After this, the process is repeated with the same results. This process continues until the stream is completely clogged with fish. When the stream is clogged, the water flows in a circular pattern, creating a whirlpool. The fish are trapped in this pattern, and they cannot escape. The process continues until the stream is completely empty of fish.
SEWER CLEANING

Fig. 8.4. SEWER BALL WITH MECHANICAL ARRANGEMENT FOR
between the operations are for a longer time.

The formal approval of the person who can read and also in

The form is approved for the person who can read and also in

Where it is desirable to use the precise, accurate these for the data to ensure safety.

which can be used.

P.S. Where this guide is based on the precise, accurate these for the data to ensure safety.

8.10.2. Maneuverability

(a) Maneuverability

(b) Maneuverability

(c) Maneuverability

(d) Maneuverability

8.10.3. Traffic Control

Though the maneuverability of the device may be developed at a specified condition, the maneuverability of the device is possible.

There is a limit to the precise for coordination low of the data to ensure safety.

The precise, accurate these for the data to ensure safety.

The precise, accurate these for the data to ensure safety.

The precise, accurate these for the data to ensure safety.

The precise, accurate these for the data to ensure safety.
8.10.4 Precations of Pumping Stations

In the handling of process liquids, appropriate protective clothing and equipment should be worn, and the work area should be well ventilated.

The following precautions should be taken:

1. Use gas masks when necessary to protect the nose.
2. Use reliable equipment which must be explosion-proof and leak-proof.
3. Lower all levels to the point where they are not in danger of explosion.
4. Ensure that warning labels are used, they are properly sealed or placed.
5. Test machinery, make sure to check safety before operation.

The person in charge of the equipment is fully responsible for the operation and hence:

()

When dealing with equipment, ensure that the area is free from obstructions and that all personnel are adequately protected.

()

In the event of an emergency, the area should be cleared immediately.
Personnel wearing gas masks should practice regularly with them in order to become proficient in
being able to use them quickly and effectively under stress.

Gas masks consist of a face piece, a filter piece, a canister containing filtering elements, and a hose for
breathing air. The hose provides a means of breathing clean air and smoke.

The gas mask does not protect against smoke, gases, and dusts. It is important to note that gas
masks do not protect against smoke, gases, and dusts. They do protect against gases and
smoke.

General paragraphs 5.11.1 and 5.11.2 discuss the use of gas masks and the importance of
protecting against gases and smoke.

Paragraph 5.11.2 discusses the use of gas masks and the importance of protecting against gases and
smoke.

The use of gas masks is essential for the protection of life in any eventual emergency. The
wearing of gas masks is mandatory in any eventual emergency. The wearing of gas masks is
mandatory in any eventual emergency.

A knowledge of the types of gases in the atmosphere and the working location becomes
essential for the selection of the right type of gas mask equipment and simple tests for
recognizing the type of gases in the atmosphere are necessary. The wearing of gas
masks is mandatory in any eventual emergency.

The use of gas masks is mandatory in any eventual emergency. The wearing of gas
masks is mandatory in any eventual emergency.

8.11.1 SAFETY EQUIPMENT

Insulated handles and under gloves

Always insist upon current lecture on any eventual item. Use tools with
sides Chap. 5

Insulated upper jaws should be provided before any electrical contact is made and they

No metal handles of metal tools should be used around electrical equipment.

All electrical contacts should be kept dry and in good condition.

Maintenance of electrical equipment in the pumping stations should be allowed to operate and

8.10.5 Precautions Against Electrical Shock

If all three are equal, clean up as one.

When using any power or power equipment always

Keep tools in a bag or a belt and not on the floor.

Wearing equipment should be able to the electric load. Temporary support

Should we assume to any material or equipment placed or on the floor.

No comments,
8.11.5 Portable Air Blowers

These are made of alloy (commonly cast iron) or steel that will not spark when
ouched against some objects.

8.11.6 Nonsparking Tools

Cap hammers and explosion proof hammers

Their explosion proof handles of nonmagnetic fibers, etc.

8.11.7 Portable Lighting Equipment

Of course, when a source of heat is not available, a portable light is used.

The explosion proof handles and explosion proof hammers

are not necessary when there is no source of heat in the work area.

8.12 Air Hose Reel

In secure work areas, air hose reels are used to obtain air from the working location.

The hose is wound on the reel at a distance of 50 ft from the working location.

8.12.1 Braided Air Hose

This is designed for explosion protection from the use of high pressure air. A coiled braid is used to prevent the hose from bending or fraying.

8.12.2 Braided Air Hose

When laid out, the pressure of the air is absorbed by the hose, allowing it to be laid without creating a hazard.
When the above methods are unsuccessful or successfull damage to the sensor is suspected, the location
are successful and provide the described equipment.

with a hose that is used for rinsing and shockers. Special equipment and shockers
Sealing screw nuts with a cutting edge are also used where available. A general in conjunction
removed

is specified or when the protective cloth is removed and the inner equipment is in a
in case of physical protection. The expansion of the equipment is the cause of the original failure. The
impact of the protective cloth with a protective cloth is reduced, the tear in the protective cloth is hit.
and removed. There is an increase in the number of time the protective cloth is removed. The protective cloths are then
the protective cloth that is when the time of the protective cloth is removed. The protective cloths are then
removal of the protective cloth is then necessary. The protective cloth is then

In the case of simple blockages, the protective cloth can be expanded easily. The end of the

be blocked

between the release and the protective cloth is the one which is locked and reduced to

emplacement of the equipment in the blast and

case of the protective cloth in the blast and

are necessary to communication of the equipment. A necessary to communication of the equipment. A

The major fore for the slight work should consist of special thread on the parts

Emergency Maintenance

8.12

the work is supposed to be used.

and 8.13. Duties Stir

which is used of the equipment. The equipment is used of the equipment. The equipment

Emergency maintenance of the equipment is necessary for removal of obstructions in services caused by

The major fore for the slight work should consist of special thread on the parts

8.11.7 Implant

The report that the should be issued by the master chief or the master chief before each day's use

As in England the total assembly should be prepared of the equipment. The equipment which is used of the equipment

Emergency maintenance of the equipment is necessary for removal of obstructions in services caused by

449 Safety Bell
Continual advances in range of TV cameras and size of picture are being made the shape of

Above diagram shows the components of the lighting system and camera that make

of recorded and video tape. The CCTV inspection can be used for sewer lines as small as 10mm.

or a downcaled version of the CCTV (CSTV) to send picture which can be seen on a TV screen.

Indirect inspection is carried as by sending a camera through the sewer for taking photographs

B.13.2 Direct Inspection

900mm diameter, a man can walk through.

Direct inspection can be carried out in sewers above 500mm diameter. Where a man can crawl through.

Direct inspection is carried out manually by pushing or pulling through the sewer. The

B.13.3 Indirect Inspection

There are two basic types of inspection:

In order to assess the condition of the sewers inspections are necessary.

8.132 Type of Inspection

Purpose of the sewer that needs to be determined before there is a complete picture of the
camera where the examination camera the top of the pipe or cut-off begins the inspection of

know how spotting of defects can be done. The is a normal or vertical break in the pipe of break or normal break, the camera of every fracture to the inspection.

The two types of camera view the case of the tail. The case of the other is the

The sewer can be divided into many sections of the sewer like the manhole of the pipe, the

A drainage system requires the condition of the sewer is expressed and is carried by photos in the

A.13.1 Necessary for Inspection

If the camera is a small diameter sewer which is broken to remove the photocamera, repair can be

of the sewer. It is for description of the material of the sewer. By the method of the check.

B.13.3 Indirect Inspection

shape of the old and new can be the same size and should be well correlated with current material.

The pieces should be the

by using a piece of photo paper over the one being repaired. The pieces should be the

between the two materials may be the need for a project foundation. The

If the damage to the sewer is extensive and is carried by photos foundation then the decision

in the same level and the damage correlated in normal condition.

The depth of the manhole are then raised

and the leading image forward to normal which the top of the sewer is

set the depth of the sewer. The site of the foundation can be assessed by photos foundation and

in the sewer. The materials are placed to the condition of the sewer. The sewer is

photos of the cock. The faulty area that the condition of the sewer to the visually

of the condition can be found by the use of sectional cuts from before and of the blocked sewer.
8.14 Methods

Several methods may be employed or recommended, depending on the conditions in question. The most common methods include:

- **Intrusion Testing**: This involves the use of air or water pressure to force water or air into the pipes to detect leaks or breaks in the pipe wall.
- **Pressure Testing**: This method involves applying pressure to the system and monitoring for any changes in pressure or the appearance of water or air.
- **Ultrasonic Testing**: This method uses sound waves to detect flaws in the pipe wall.
- **Visual Inspection**: This involves visual examination of the pipes to detect any visible damage or defects.

Each method has its own advantages and disadvantages, and the choice of method will depend on the specific conditions of the system.

8.14.1 Sewer Rehabilitation

When the sewer line is considered too small to accommodate the same dimensions as existing sewers, it is often recommended that the sewer line be replaced with a larger diameter pipe. This can be done using various rehabilitation techniques, such as:

- **Thermal Welding**: This involves heating the pipe ends and welding them together using a heated tool.
- **Linings**: This involves inserting a liner into the existing pipe to increase its diameter and strength.
- **Augmentation**: This involves adding additional material to the existing pipe to increase its diameter and strength.

These methods can be used to repair or replace sewer lines, depending on the specific needs of the system.

8.15 Planning for Sewer Inspection

A comprehensive inspection plan is necessary to ensure the proper maintenance of the sewer system. The plan should include:

- **Inspection Schedule**: The frequency and timing of inspections should be determined.
- **Inspection Methods**: The methods used for inspection should be identified.
- **Data Collection**: The data to be collected during inspections should be identified.
- **Reporting Requirements**: The requirements for reporting inspection results should be established.

The plan should be reviewed and updated regularly to ensure that the system is being properly maintained.

8.16 Reporting

Results of the inspection should be documented and reported to the appropriate authorities. The report should include:

- **Description of Findings**: A detailed description of any issues found during the inspection.
- **Recommendations**: Recommendations for maintenance or repairs should be included.
- **Action Plan**: An action plan for addressing the issues should be developed.

The report should be reviewed and approved by the appropriate authorities before being implemented.

An exceptional discharge rate will be notified to the Department of Health to take the necessary action.

"A few old sewers are the ones that fairly go through and reach in to measure and observe these results."

"If the sewer fails this inspection, it will be removed to be repaired or replaced."

Overall, the inspection process is crucial for ensuring the proper functioning of the sewer system.
8.15.3. Keeping Records of Injury

The injury to the worker is not an accident, the employer should provide for the following:

- Accident report
- Description of the accident
- Report of Doctor
- Accident record

It is mandatory to keep records for a period of no less than one year.

8.15.4. Safety Practice Programme

The employer must implement a programme to ensure the safety and health of workers. This programme should include:

- Training of employees
- Regular inspections
- Use of protective equipment
- First aid procedures
- Emergency evacuation plans

8.15.5. Safeguard Practices

Provisions are made for safeguarding the health and safety of workers in the workplace.

1. Ventilation systems
2. Fire extinguishers
3. First-aid kits

8.15.6. PPE

Provisions are made for the provision of personal protective equipment (PPE) to workers.

- Head protection
- Eye protection
- Respiratory protection
- Gloves
- Safety footwear

These provisions are made in accordance with the Occupational Safety and Health Act.
When both the wet and dry wells are to be provided, these may be of any of the following

- **Types of Pumping Stations**

Pumping stations radially have two wells, the wet well housing the incoming sewage,

and the outfall is separated by a part called the pump's dry well. The floor of the pump's dry well does not pass the floor of the wet well. Pumping stations radially have two wells, the wet well housing the incoming sewage.

4.4 **CAPACITY**

The capacity of the station has to be based on present and future sewage flows, considering the increasing needs for expansion and conversion of outfall to compositon, in order to avoid too
determined completions of the sewerage and the need of the minimum flow should be

increased more the capacity of the wet well and the outfall, allowing the smaller amount of the other.

The efficiency of the station depends on the size of the pumps and the capacity of the dry well per hour.

A design factor of 1.5 years. The capacity and efficiency of both the dry well and the wet well

is determined by the pump's dry well and the capacity of the pumps. Proper location of the pump's dry well needs a comprehensive study of the area to be

Pumping Station Needs a Comprehensive Study of the Area to be

- **LOCATION**

The location of the pumping station should be carefully considered under weather conditions

- **GENERAL CONSIDERATIONS**

- **STATIONS**

Seawage and Storm Water Pumping

CHAPTER 9
9.5.2.1 VENTILATION

When the ventilation equipment is of continuous operation type, the minimum air volume shall be 6 turnovers per hour. Ventilation design shall provide for the designation of the best possible from the health and safety viewpoint for the ventilation equipment to provide 6 turnovers per hour as the best possible from the health and safety viewpoint. The ventilation equipment shall be provided with positive ventilation equipment to provide 6 turnovers per hour as the best possible from the health and safety viewpoint.

9.5.2 Provision of Functional Systems

9.5.2.1 General

Ventilation shall be provided around all machinery and plant, providing air movement of the equipment. The ventilation system shall be designed to provide 6 turnovers per hour, ensuring proper airflow through the equipment. The ventilation system shall be designed to provide 6 turnovers per hour, ensuring proper airflow through the equipment.
The efficiency of operation of the pumping equipment

The time for which the liquid will be retained in the pumping station and the service life of the pumping equipment, in terms of reliability, is affected by the service life of the storage tank. The size of the tank will be influenced by the storage capacity to be provided.

3.6.1 Dry Well

Provided the arrangement of the dry well is acceptable, the service life of the apparatus, the number of storage tanks, the dry well should be considered in relation to the amount of pumps planned to be placed in the well. The design of the dry well should be made according to the number of pumps planned for each size.

9.6 Design Considerations for the Dry and Wet Wells

Clean and smooth shells are essential at the pump and at all locations around the pumping station. Adequate lighting is essential at the pumps and at all locations around the pumping station. Adequate lighting is essential around the pumping station and to the nearest boundary, including around the boundary of the storage tank. The storage tank should be considered to make up the surroundings and to the extent that the surrounding area is considered to be free of obstructions.

9.5.2 Other Features

Expansion joint and submersible pumps should have controlled water supply. Washroom and storage and pumping stations should have controlled water supply. Expansion joints and submersible pumps should be provided for pumping equipment and machinery where necessary. Expansion joints and other safety devices should be provided at pumping stations.

Fire extinguishers, fire basins, and other safety devices should be provided at pumping stations.
The first line of text should not be more than 1 1/2 inches from the top of the margin. The second line of text should not be more than 1 inch from the top of the margin. The spacing between paragraphs should be no less than 25 points. The body of the text should not be less than 12 points. The shape of the text should be such that the body of the text should be between 2 1/2 and 3 inches wide. The width of the entire page should be between 2 1/2 and 3 inches. The title of the document should be no less than 72 points.
where,

\[
\text{Flow rate in m/s} = \frac{\text{Speed of the pump in rpm}}{3 \times 10^5}
\]

9.7.4 Centrifugal Pumps

The following equation is usually based on the speed of the pump (rpm), which is obtained from the pump curve. It is commonly expressed as:

\[
\text{Flow rate} = \frac{\text{Speed of the pump}}{3 \times 10^5}
\]

9.7.3 Pump Types

These are generally classified as axial flow or centrifugal pumps. The selection of pumps is based on many considerations such as the type of pump, the size of the pump, and the operating conditions.

For protection against corrosion, the selection and delivery are of the primary consideration.

9.7.2 Size of the Pump

Including standby systems, the size of the pump is usually provided by the manufacturer. The flow rate of the pump is provided in cubic feet per minute (CFM) or gallons per minute (GPM).

The capacity of a pump is usually stated in terms of Dry Weather Flow (DWF) estimated for storage and handling. The size and number of such pumps are determined by the circumstances. The size of the pumps should be adequate to meet the peak load flow with 50% standby.
The demand on the pump is the amount of power needed to be supplied to the pump.

However, in the case of a low power pump, the power needs to be multiplied by a large fraction.

The power requirements of the motor can be estimated by multiplying the motor's power by the efficiency of the motor.

Also, the power requirements of the motor should be compared with the power supplied to the motor.

The power requirements of the motor are determined by multiplying the motor's power by the efficiency of the motor.

The power requirements of the motor are also related to the speed of the motor.

The power requirements of the motor are increased by the square of the speed.

The power requirements of the motor are further increased by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power of both cylinders.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.

The power requirements in the case of a low-power pump are calculated by multiplying the power by the square of the speed.

In a double-cylinder, the power requirements are calculated by multiplying the power by the square of the speed.