

MAHARASHTRA STATE POWER GENERATION COMPANY LTD.



## MAHAGENCO- NAGPUR MUNICIPAL CORPORATION WASTE WATER REUSE PROJECT AT NAGPUR WATER SUPPLY FOR (3X660 MW) KORADI TPS

ASHEESH SHARMA MANAGING DIRECTOR MAHAGENCO



# WATER USAGE IN THERMAL POWER PLANTS

- **•** Electricity generation consumes over 50% of all water used in the industries.
- 4.0 to 4.5 Ltrs/kwh
- WATER REQUIREMENT FOR A POWER PLANT:

| POWER PLANT<br>(MW) | WATER<br>REQUIREMENT<br>(MLD) | POPULATION<br>EQUIVALENT<br>(IN LAKHS) |
|---------------------|-------------------------------|----------------------------------------|
| 250                 | 24                            | 2.4                                    |
| 500                 | 42                            | 4.2                                    |
| 660                 | 55                            | 5.5                                    |



#### WATER CONSUMPTION FOR A TYPICAL POWER PLANT

Make-up Water Requirement for Cooling Water System and Ash Evacuation (72.0 to 78.0%)

Other Misc. Requirements (10.0 to 11.0%)

- Service Water, AHP Seal Water, Fire Fighting, Coal Dust Suppression (9.0 to 10.0%)
- D.M. Water Requirements ( 3.0 to 4.5%)

Potable Water for Plant & Colony (1.25% to 1.50%)



## **TYPICAL WATER SUPPLY SOURCES FOR TPS**

- Fresh water from rivers, canals, etc.
- For power plants located in coastal areas water for cooling of condenser and auxiliaries is drawn from sea or a creek in an open cycle.
- For coastal plants, requirement of water for other auxiliaries is met from an alternative source or it is generated from sea water by installing a desalination plant.



#### WATER REQUIREMENT FOR EXISTING MAHAGENCO POWER PLANTS IN VIDARBHA REGION

| Power station | Installed<br>Capacity (MW) | Water<br>Requirement<br>(MLD) | Water Source                    |
|---------------|----------------------------|-------------------------------|---------------------------------|
| Koradi        | 620                        | 72                            | Kamptee-Khairy<br>Pench project |
| Khaparkheda   | 1340                       | 146                           | Kamptee-Khairy<br>Pench project |
| Paras         | 562.5                      | 56                            | Barriage on Mun<br>River        |
| Chandrapur    | 2340                       | 246                           | Erai Dam                        |



## WATER REQUIREMENT FOR FUTURE POWER PROJECTS IN VIDHARBHA REGION

| Power Generating<br>Company | Proposed Capacity<br>(MW) | Water Requirement<br>(MLD) |
|-----------------------------|---------------------------|----------------------------|
| MAHAGENCO                   | 3230                      | 350                        |
| NTPC                        | 2320                      | 240                        |
| PRIVATE                     | 9535                      | 1030                       |
| TOTAL                       | 13765                     | 1620                       |

**Total Water Requirement for future power projects in Vidharbha Region is over 1620 MLD.** 



## **"IMPACT OF POWER STATIONS IN VIDARBHA REGION ON WATER RESOURCES"**

As per a case study conducted by IIT Delhi and Green Peace in 2011.

- Water availability in Wardha and Wainganga Sub-basins shows a declining trend.
- Water will not be available for any other purpose like irrigation or urban uses, if it is consumed by power stations.
- Availability of water for future thermal power plants or future irrigation will be difficult without creating additional storage capacity.



## **EXPANSION PROJECT AT KORADI (3x660 MW)**

- Considering the growing power demand, Mahagenco decided to expand the existing capacity of Koradi Thermal Power Plant in 2008.
- Expansion Capacity 1980 MW (3 X 660 MW)
- Requirement of water for the expansion project is 130 MLD
- No additional water reservation was available from the existing Kamptee Khairee Pench project



## AVAILABLE OPTIONS ...

| Sr.<br>No. | ALTERNATE SOURCES<br>AS SUGGESTED BY WRD | REASONS FOR NON<br>FEASIBILITY                    |
|------------|------------------------------------------|---------------------------------------------------|
| 1          | Ambora Barrage.                          | - Required construction of new dams and barrages. |
| 2          | Kochi Barrage on Kanhan<br>River         | - Water allocation not easily<br>available.       |
| 3          | Rahri Barrage on Kanhan<br>River         | - Most Expensive and<br>Uneconomical.             |

• Considering the water scarcity in the Vidharbha Region and huge water demand for upcoming power plants, MAHAGENCO decided to go for a alternate unconventional source.



#### **AN ALTERNATIVE APPROACH...**

- USAID conducted a feasibility study for re-use of treated sewage from Nagpur city for its use in a Thermal Power Station.
- MAHAGENCO found the proposal feasible and economical.
- Nagpur Municipal Corporation (NMC) had already submitted a proposal of 110 MLD STP under JnNURM.
- MoU signed between NMC and MAHAGENCO for "Construction and Operating Agreement of Treatment and Transmission Facilities for Reclaimed Water Usage".



## **PROJECT DETAILS...**

- STP along with secondary and tertiary treatment to be constructed, operated and maintained by MAHAGENCO as per their requirements.
- Grant of Rs. 90 Cr received from JnNURM by NMC shall be passed on to MAHAGENCO towards construction.
- Land required for the project shall be provided by NMC.
- NMC shall supply 110 MLD (<u>+10%)</u> sewage to MAHAGENCO
  @ Rs 15 Crs./ year.



## **PROJECT LAYOUT**





## **TREATMENT PROCESS ADOPTED**

- 1) <u>Module A</u>: Intake Works, KT Weir, Raw Sewage Pumping Station at Nag Nallah & M.S. Transmission Pipe Line (1200mm dia, 2.3 Km.) From Nag Nallah to proposed STP at Bhandewadi
- 2) <u>Module B</u>: Sewage Treatment Plant at Bhandewadi:
  - i) Primary treatment : Parshall Flume & Primary Clarifiers
  - ii) Secondary treatment (Biological Treatment) : Sequential Batch Reactor
- 3) Module C : Tertiary Treatment Plant at Bhandewadi :

Deep Bed Multi-Media Filters, Chlorination, Sludge Handling System

- 4) **Module E**: Treated water Pumping Station at Bhandewadi.
- 5) <u>Module D</u>: M.S. Transmission Pipe line (1200mm dia, 16.2 Km.) from Bhandewadi to one day storage reservoir at Koradi Thermal power station.



### **COST OF DELIVERED WATER**

| 1) Capital Cost of the Project | (130MLD) | : Rs. 180 Cr |
|--------------------------------|----------|--------------|
|--------------------------------|----------|--------------|

- i) JnNURM Grant : Rs. 90 Cr
- ii) MAHAGENCO Share : Rs. 90 Cr
- 2) Operation and Maintenance Cost : Rs. 1.50 Cr/Year
- **3**) Payment to NMC for raw sewage purchase : Rs. 15 Cr/Year
- 4) Cost of water to MAHAGENCO : Rs. 3.40 per Cum.
- 5) Cost of fresh water from irrigation department : Rs. 1.20 to 9.60 per Cum.



## RAW AND TREATED SEWAGE CHARACTERISTICS

Sewage treatment plant followed by tertiary treatment is designed to meet the standards for treated effluent as given below:

| Parameter                            | Raw Sewage<br>Quality | Outlet Quality<br>after Secondary<br>treatment | Characteristics<br>after tertiary<br>treatment |
|--------------------------------------|-----------------------|------------------------------------------------|------------------------------------------------|
| рН                                   | 6.8 - 7.8             | 6.8 - 7.8                                      | 6.8 - 7.8                                      |
| BOD <sub>5</sub> @ 20 <sup>0</sup> C | 250 mg/L              | Less than 15 mg/L                              | Less than 5 mg/L                               |
| Total Suspended Solids               | 300 mg/L              | Less than 20 mg/L                              | Less than 5 mg/L                               |
| Total Coli form<br>(MPN/100ml)       | >16,00,000            |                                                | Less than<br>2 MPN / 100 mL                    |



## **CHALLENGES OF USING SEWAGE WATER**

- 1) Need Psychological acceptance to use sewage water as an alternative source.
- 2) In case of deficiency in quality/quantity of treated sewage water in unavoidable circumstances, the following additional precautionary measures have to be taken:
  - i) Side Stream filtration for C.W. System to reduce TSS.
  - ii) Additional chlorination in power plant area for disinfection.
  - iii) Back-up source of fresh water (30%).



### **PROJECT BENEFITS**

- Saving of fresh water to the extent of 47 MM<sup>3</sup> per annum.
- New STP of 130 MLD will improve ecology and environment of surrounding water bodies
- Reliable and economical source of water supply for power plant
- In future, power generation from STP sludge is also envisaged to make the power requirement of STP self sustainable.



# THANK YOU